Термодинамическая шкала температур абсолютный нуль. Абсолютная термодинамическая температура

Термодинамическая шкала температур абсолютный нуль. Абсолютная термодинамическая температура
Термодинамическая шкала температур абсолютный нуль. Абсолютная термодинамическая температура

Температура

Температура является количественной мерой «нагретости» тела. Более нагретым является то, «нагретость» которого уменьшается при длительном контакте с другим телом, принимаемым в этом случае, по определению, за менее нагретое. Степень «нагретости» тела измеряется по характеристикам материальных тел, зависящих от «нагретости». Измерение «нагретости» сводится к измерению некоторой величины тела, которая изменяется с изменением «нагретости» тела. Тело, выбираемое для измерения «нагретости», называется термометрическим, а величина, посредством которой измеряется «нагретость», называется термометрической величиной. Наиболее широко известными являются «нагретость», при которой кипит вода при атмосферном давлении, и «нагретость», при которой она замерзает. Эти реперные точки называются точкой кипения воды и точкой замерзания. Температурой называется числовое значение величины, с помощью которой характеризуется «нагретость» тела. Температура выражается в градусах. Пусть точке кипения присваивается температура t2, а точке замерзания - температура t1, тогда градусом температуры называется величина

где l2 и l1 - термометрические величины термометрического тела в точках кипения и замерзания воды, соответственно.

Эмпирические шкалы температур

Температурой термометрического тела называется число, которое определяется по формуле

где lt - термометрическая величина при измеряемой «нагретости». Наиболее известными эмпирическими шкалами температур являются Цельсия и Фаренгейта, которые отличаются значениями температур, приписанных реперным точкам. В шкале Цельсия t2=100 и t1=0, а в шкале Фаренгейта t2=212 и t1=32. Следовательно, одна и та же «нагретость» характеризуется в этих шкалах разными температурами:

Виды термометров Значение температуры для одной и той же шкалы температур зависит от термометрического тела. Поэтому, термометры, использующие различные термометрические тела, показывают различную температуру. Совпадение показаний термометров может быть только в реперных точках, если они одинаковы для данных термометров. Термометры бывают различными: газовыми, жидкостными, твердотельными. Во всех них используется то, что термометрическое тело (газ, жидкость, твердое тело) меняют свои физические характеристики (объем, длину, проводимость, и проч.) в зависимости от температуры.

Международная практическая шкала Международная практическая шкала температур образована таким образом, чтобы с ее помощью можно было просто калибровать научные и технические приборы и в то же время воспроизводить с технически максимально возможной точностью термодинамическую шкалу температур. Единицами температуры являются кельвин и градус Цельсия в зависимости от начала отсчета температур. Шкала температур постоянно уточняется в соответствии с результатами научных исследований и достижениями измерительной техники. Между реперными точками температурная шкала устанавливается с помощью интерполяционных формул, по которым температура вычисляется по показаниям термометров, принятых за стандартные. Международная практическая шкала температур чрезвычайно точно согласуется с термодинамической шкалой температур в реперных точках и достаточно точно во всех остальных точках.

Термодинамическая шкала

На основании 2-й теоремы Карно можно установить абсолютную термодинамическую шкалу температур, не зависящую от термометрического тела. Рассмотрим систему изотерм и адиабат. Фигуры 1, 2, 3, заключенные между двумя соседними изотермами и двумя адиабатами, являются циклами Карно.

Из выражения для КПД цикла Карно можно записать последовательность соотношений

Т.е. если задать какую-нибудь реперную точку (например, температуру тройной точки воды 273,16 К), то проведя последовательность прямых обратимых циклов Карно можно вычислить произвольную температуру (в произвольном процессе), если измерить соответствующее величины Q. Такое определение температуры не зависит от термометрического тела. Оно впервые было дано Кельвином. В честь которого была названа единица абсолютной термодинамической температуры.

Отрицательные абсолютные температуры Понятно, что отрицательная абсолютная термодинамическая температура не имеет физического смысла. Тем не менее, в квантовых системах понятие отрицательной абсолютной температуры имеет вполне определенный смысл: это мера способа заполнения квантовых уровней энергии частицами. Если частицы заполняют сначала нижние энергетические уровни, так, что на более высоком уровне частиц меньше, то температура положительна и совпадает по значению с термодинамической. Если же создается инверсность населенностей, т.е. на более низко расположенном уровне частиц меньше, чем на более высоком, то температуре приписываются отрицательные значения. Тем не менее, такие значения все же не имеют физического смысла.

1. В 1848 г. Вильям Томсон (лорд Кельвин) указал, что теоремой Карно можно воспользоваться для построения рациональной температурной шкалы, не зависящей от индивидуальных особенностей термометрического вещества и устройства термометра.

Из теоремы Карно следует, что к. п. д. цикла Карно может зависеть только от температур нагревателя и холодильника. Обозначим буквами t 1 и t 2 эмпирические температуры нагревателя и холодильника, измеренные каким-либо термометром Тогда

Q1 − Q2

F (t 1, t 2 )

где f (t1 , t2 ) - универсальная функция выбранных эмпирических температур t1 и t2 . Ее вид не зависит от устройства машины Карно и от рода используемого рабочего вещества.

Чтобы построить термодинамическую шкалу температур, введем более простую универсальную функцию

=ϕ(t 1, t 2 )

очевидно, что эти фунцкции связаны

f (t1, t2 )=

Q1 − Q2

−1 =ϕ(t 1, t 2 )−1

Определим вид этой функции ϕ(t 1, t 2 )

Для этого рассмотрим 3 цикла Карно. Т.е. имеется 3 тепловых резервуара, поддерживаемых при постоянных температурах

Д ля циклов Карно 1234 и 4356 можно написать

Q 1 =ϕ(t 1, t 2 )

Q 2 =ϕ(t 2, t 3 )

Исключив отсюда тепло Q2, получим

Q 1 =ϕ(t 1, t 2 )ϕ(t 2, t 3 )

С другой стороны для цикла 1256

Q 1 =ϕ(t 1, t 3 )

ϕ(t 1, t 3 )=ϕ(t 1, t 2 )ϕ(t 2, t 3)

ϕ(t 1, t 2 )=

ϕ(t 1, t 3)

ϕ(t 2, t 3)

Это соотношение не должно зависеть от t3 . т. к. в этот цикл не входит 3-й резервуар, температура, которого может быть произвольной. Следовательно функция должна иметь вид:

ϕ(t 1, t k )=Θ(t 1 )Θ(t k )

Θ(t 1 )

Θ(t 2 )

Так как величина

Θ(t ) зависит только от температуры, то она сама может быть

принята за меру температуры тела.

Величину Θ и называют абсолютной термодинамической температурой.

своего знака, т.е. абсолютная термодинамическая температура не может принимать отрицательных значений.

Предположим, что существует тело, абсолютная температура которого отрицательна. Используем его в качестве холодильника в тепловой машине Карно. В качестве нагревателя возьмем другое тело, абсолютная температура которого положительна. В этом случае получим противоречие со вторым законом термодинамики. (без доказательства)

Самая низкая температура, допускаемая постулатом второго начала термодинамики, есть 0. Эта температура называется абсолютным нулем температур.

Второе начало термодинамики не может ответить на вопрос, достижим или не достижим абсолютный нуль температур. Оно позволяет лишь утверждать, что

охладить тело ниже абсолютного нуля невозможно.

Достижимость абсолютного нуля решается в рамках 3-его закона термодинамики.

2.4.Тождественность термодинамической шкалы температур со шкалой идеально-газового термометра

о существим цикл Карно, взяв в качестве рабочего тела идеальный газ. Для простоты будем предполагать, что количество газа равно одному молю.

1-2 Изотермический процесс

По первому началу δ Q = dU + PdV . Так как U=U(T), dU=0

δ Q = PdV , PV=RT

Интегрируя это выражение, находим

Q1 = RT 1 ln (V 1 / V 2 )

Аналогично

3-4 Изотермический процесс

Q2 = RT 2 ln (V 3 / V 4 )

T 1 ln (V 1 / V 2 )

ln (V 3 / V 4 )

(2-3) (4-1) адиабатический процесс

TV γ − 1 = const

T 1 V γ 2− 1 = T 2 V γ 3− 1

T 1 V γ 1− 1 = T 2 V γ 4− 1

Молекулярная физика

поделим одно на другое

Это соотношение справедливо и для таких идеальных газов, у которых величина γ зависит от температуры.

Из этого соотношения следует, что абсолютная термодинамическая шкала температур станет тождественной с соответствующей температурной шкалой идеально-газового термометра, если в обоих случаях температуре основной реперной точки одно и то же значение.

Например, температуре таяния льда припишем 273.16K.

Используя формулу (1) можно получит выражение для КПД машины Карно, у которой в качестве рабочего вещества используется идеальный газ

Q1 − Q2

T 1 − T 2

2.5. Преобразование теплоты в механическую работу при изотермическом процессе. Вторая теорема Карно

Теплота - энергия, передаваемая от тела с более высокой температурой телу с меньшей температурой, например, при их контакте. Сама по себе такая передача энергии не сопровождается совершением работы, потому что при этом нет перемещения каких-либо тел. Она приводит лишь к увеличению внутренней энергии тела, которому теплота передается, и к выравниванию температур, после чего прекращается и сам процесс теплопередачи. Но если тепло передается телу, которое при этом может расширяться, то оно может совершить работу.

Согласно закону сохранения энергии

δQ =dU +δ A

Наибольшая "работа совершается при изотермическом процессе, когда внутренняя энергия не изменяется, так что

δQ =δ A

Большей работа, конечно, не может быть.

Следовательно, для получения максимальной работы, равной подведенной теплоте, нужно передавать теплоту расширяющемуся телу так, чтобы между ним и источником теплоты не было разности температур.

Правда, если между источником теплоты и телом, которому она передается, нет разности температур, то теплота и передаваться не будет!

На практике, чтобы теплота передавалась, достаточно и бесконечно малой разности температур, что почти не отличается от полной изотермичности. Процесс передачи теплоты идет при таких условиях бесконечно медленно и поэтому обратим. Т.о. цикл

Карно - это идеализированный цикл, при котором производится за цикл бесконечномалая работа и его можно считать обратимым, т. к. диссипативными процессами пренебрегаем.

Реальный процесс - диссипативный, т. к. часть тепла идет на увеличение внутренней энергии и работа в этом случае

δ A н =δQ −dU ≤δQ =δ A р

Т.о. необратимый процесс приводит к увеличению внутренней энергии тела в ущерб работе.

δ A н ≤δ A р

Отсюда следует вторая теорема Карно: Коэффициент полезного действия всякой тепловой машины не может превосходить коэффициент полезного действия идеальной машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника.

η= Q1 − Q2 ≤ T 1 − T 2 (1)

Но если рассматривать наш процесс стойки зрения изменений, происходящих в самом рабочем теле, то Q1 и Q2 - это количество теплоты, полученное и соответственно отданное рабочим телом. Этим величинам Q1 и Q2 нужно, очевидно, приписать противоположные знаки. Будем считать полученное телом количество теплоты Q1 положительным; тогда Q2 отрицательно.

Следовательно, неравенство (1) перепишется в виде:

Q1 + Q2

T 1 − T 2

В случае обратимых процессов

Молекулярная физика

Q1 + Q2 = T 1 − T 2

1 +Q 2 =1 − T 2

А в случае необратимого (неравновесного) процесса

Эти соотношения можно обобщить следующим образом:

≤0

2 δ Q

1 δ Q

∫ 1 T 1

+ ∫ 2 T 2

≤0

δ T Q ≤ 0

Это соотношение называется неравенством Клаузиуса.

Которая не зависит от особенностей термометрического вещества и устройства термометра.

Поэтому прежде чем перейти непосредственно к рассмотрению термодинамической шкалы температур, сформулируем теорему, которая называется теоремой Карно:

Теорема Карно

Все обратимые машины, работающие по циклу Карно, имеют одинаковый коэффициент полезного действия.

Здесь надо подчеркнуть, что речь идет не о том, что все обратимые машины имеют равный КПД, а о том, что все обратимые машины, работающие по циклу Карно, имеют равный КПД при одних и тех же заданных температурах нагревателя и холодильника. Мы эту теорему доказывать не будем, так как доказательство довольно простое и встречается во всех учебниках по термодинамике. Кроме того, в предыдущих главах была получена формула для расчета КПД цикла Карно, при выводе которой не делалось никаких ограничений по веществу рабочего тела и по конструкции теплового двигателя, при этом мы получили, что КПД цикла Карно зависит только от температур нагревателя и холодильника.

\[\eta =1-\frac{Q_{ch}}{Q_n}\ \left(1\right),\]

где $Q_n$ - количество теплоты, полученное рабочим телом от нагревателя, $Q_{ch}$- количество теплоты, отданное рабочим телом холодильнику. Так как $\eta $ имеет одинаковые значения для всех тепловых машин, работающих по обратимому циклу Карно с температурой нагревателя и температурой холодильника. Обозначим временно величины этих температур ${\theta }_1\ и\ {\theta }_2,$ то для отношение $\frac{Q_{ch}}{Q_n}$ можно записать:

\[\frac{Q_{ch}}{Q_n}=f\left({\theta }_1\ ,\ {\theta }_2\right)\left(2\right),\]

где $f\left({\theta }_1\ ,\ {\theta }_2\right)$ - функция температур холодильника и нагревателя, универсальная для всех циклов Карно. Покажем, что $f\left({\theta }_1\ ,\ {\theta }_2\right)$ можно представить в виде:

где $\varphi \left(\theta \right)$ - универсальная функция от температуры.

Отношение двух термодинамических температур

Рассмотрим две обратимые машины (рис.1). Холодильник одной машины -- нагреватель для другой. Допустим, что вторая машина отбирает от нагревателя с температурой ${\theta }_2$- столько тепла, сколько отдает ему первая машина (${Qch}_2={Qn}_2$). Исходя из (2), для каждой машины запишем:

\[\frac{Q_{ch2}}{Q_{n1}}=f\left({\theta }_1\ ,\ {\theta }_2\right)\left(4\right),\] \[\frac{Q_{ch3}}{Q_{ch2}}=f\left({\theta }_2\ ,\ {\theta }_3\right)\left(5\right).\]

Если рассмотреть машину на рис.1 как единую с тепловым резервуаром температуры (${\theta }_1$) и холодильником с температурой (${\theta }_3$), то получим:

\[\frac{Q_{ch3}}{Q_{n1}}=f\left({\theta }_1\ ,\ {\theta }_3\right)\left(6\right).\]

Разделим (6) на (4), имеем:

\[\frac{Q_{ch3}}{Q_{ch2}}=\frac{f\left({\theta }_1\ ,\ {\theta }_3\right)}{f\left({\theta }_1\ ,\ {\theta }_2\right)}=\frac{Q_{n2}}{Q_{ch2}}\left(7\right).\]

Сравниваем (7) и (5), получаем:

Уравнение (8) связывает температуры, связывает все температуры${\ \theta }_1\ ,\ {\theta }_2,\ {\theta }_3.$ Решим, что ${\ \theta }_1$ постоянна, получим, что функция $f\left({\theta }_1\ ,\ \theta \right)$ -- функция одной переменной $\theta $. Обозначим эту функцию $\varphi (\theta)$, тогда уравнение (8) примет вид:

Что совпадает с тем, что мы хотели доказать, то есть с выражением (3).

Функция $\varphi \left(\theta \ \right)$ зависит только от температуры. Поэтому ее значение можно использовать для характеристики температуры соответствующего тела, то есть полагать температуру равной $\varphi $, где $\varphi =\varphi \left(\theta \ \right).$ В таком случае уравнение (4) примет вид:

\[\frac{Q_{ch2}}{Q_{n1}}=\frac{{\varphi }_2}{{\varphi }_1}\ \left(11\right).\]

Соотношение (11) ложится в основу термодинамической шкалы температур. Ее преимущество -- независимость от выбора рабочего тела в цикле Карно, которое используют для измерения температуры.

Величину $\varphi $ принимают за меру температуры тела и называют абсолютной термодинамической температурой. В примерах мы покажем, что она совпадает с используемой нами ранее с абсолютной температурой T по шкале идеального газового термометра. В выражении (11) мы видим отношение двух термодинамических температур. Чтобы определить температуру одного тела можно:

  • взять какие-либо две постоянные температурные точки (например, температуру плавления льда $T_i$ при нормальных условиях и температуру кипения воды ($T_k$)). Найти разность количества теплоты кипения $(Q_k)$ и плавления $(Q_i)$, допустим, что разность ${(Q}_k-Q_i)=100$ градусам, тогда температурный интервал делим на 100 равных частей, каждая часть кельвин. Решаем систему из двух уравнений:
  • \[\frac{T_k}{T_i}=\frac{Q_k}{Q_i},\ T_k-T_i=100\ (12)\]

    вычисляем температуры. Отношение теплот можно измерить или найти косвенным вычислением.

  • Второй метод: для сопоставления температур двух тел необходимо осуществить цикл Карно, в котором исследуемые тела использовать, как нагреватель и холодильник. Отношение, отданное теплоты к полученной теплоте -- есть отношение температур исследуемых тел.

Абсолютная термодинамическая температура не может быть отрицательной. Самая низкая температура, которую допускает второе начало термодинамики : T=0K. Абсолютная термодинамическая шкала температур тождественна с абсолютной шкалой.

Задание: Докажите тождественность термодинамической шкалы температур с абсолютной шкалой идеального газового термометра, используя цикл Карно. В качестве рабочего тела рассмотрите 1 моль идеального газа.

Найдем количество теплоты, которое получило рабочее тело. Поступление теплоты происходит на изотермическом участке 1-2.

Первый интеграл равен нулю, так как мы имеем дело с изотермическим процессом , а второй -- работе при $T_n=const$ (которая рассчитывалась в разделе изотермический процесс). На участке 3-4 система тепло отдает в холодильник при температуре $T_{ch}$. Запишем $Q_{ch}$:

Найдем отношение:

\[\frac{Q_{ch}}{Q_n}=\frac{RT_{ch}ln\frac{V_4}{V_3}}{RT_nln\frac{V_2}{V_1}}\left(1.3\right).\]

Выясним, как соотносятся отношения объемов. Для этого используем уравнения адиабат для соответствующих процессов в цикле Карно:

Соответственно выражение (1.3) будет иметь вид:

\[\frac{Q_{ch}}{Q_n}=\frac{T_{ch}}{T_n}\left(1.5\right).\]

Сравниваем уравнение (1.5) с выражением, которое было получено для отношения термодинамических температур (1.6):

\[\frac{Q_{ch}}{Q_n}=\frac{{\varphi }_2}{{\varphi }_1}\ \left(1.6\right).\]

Можно сделать вывод о том, что абсолютная термодинамическая шкала температур станет тождественной с соответствующей температурной шкалой идеального газового термометра, если в обоих случаях температуре основной реперной точки приписать одно и тоже значение. Так как на практике так и поступают, то считаем, что тождественность $\varphi =T$ доказана.

Пример 2

Задание: Докажите, что термодинамическая температура не может быть меньше нуля.

Пусть тело с температурой $T_{ch} \[\eta =1-\frac{T_{ch}}{T_n}\left(2.1\right),\]

если $T_{ch}0,\ $ получается $\eta >1$, что противоречит второму началу термодинамики, следовательно, неосуществимо.

Теорема Нернста – третье начало термодинамики

Температура относится к интенсивным термодинамическим параметрам состояния тел. Определение ее осуществляется через экстенсивные свойства тел, например через изменение объема жидкости в бытовом термометре. Для таких термометров могут быть приняты различные равномерные температурные шкалы, в которых могут быть приняты одинаковыми значения температур только в двух опорных точках. При всех других значениях температур различные термометры будут давать различные показания.

Например, возьмем два жидкостных термометра с различными свойствами жидкостей в них (рис.8.12). В цилиндрических столбиках этих термометров можно добиться одинакового уровня при температуре t 0 путем их наполнения при данной температуре, при этом можно подобрать диаметры цилиндров таким образом, чтобы при температуре t 1 их уровни тоже были одинаковыми. Однако в этих цилиндрах при температурах, отличных от t 0 и t 1 , уровни жидкостей совпадать не будут, из-за различных изменений объемов жидкостей с различными термодинамическими свойствами.

Зависимость единиц измерения температуры от свойств вещества, используемого в термометре, объясняет наличие многообразия температурных шкал: Цельсия, Реомюра, Фаренгейта и т.д. Все это затрудняет использование их показаний для выполнения расчетов и сопоставления термодинамических параметров различных веществ.

Теорема Карно позволила обосновать абсолютную термодинамическую шкалу температур, которая не зависит от свойств веществ.

Принцип построения такой шкалы основан на создании последовательной цепочки циклов Карно, каждый из которых использует теплоту q 2 предыдущего цикла как теплоту q 1 для последующего цикла (рис.8.13). Например, в цикле 1234 совершается работа l t , а его отведенная теплота q 2 используется в виде подведенной теплоты q 1 в цикле 4356 и т.д. Приняв работу всех циклов одинаковой (l t =const), получим равенство температурных интервалов, в котором реализуется каждый цикл (DT=const), поскольку все они осуществляются в одинаковых диапазонах изменения энтропии (Ds=const):

Получается, что это изменение температуры пропорционально работе цикла Карно.

Построенная на таком принципе температурная шкала будет абсолютной, т.е. не зависящей от свойств вещества, поскольку показатели экономичности цикла Карно не зависят от свойств рабочего тела. В таком термометре, используя любое вещество, совершив одинаковую работу, получим одинаковое изменение его температуры.

В международной системе единиц (СИ) в качестве единицы абсолютной – термодинамической шкалы температур – принят кельвин (название в честь Томсона лорда Кельвина, обосновавшего в 1848 г. абсолютную термодинамическую шкалу температур).

Кельвин – единица измерения температуры по термодинамической шкале, для которой тройной точке воды соответствует значение 273,16 К. Это число выбрано исходя из того, чтобы один градус Цельсия равнялся одному градусу Кельвина. Температура таяния льда при нормальном давлении на 0,01º ниже температуры тройной точки воды, следовательно, 0 ºС соответствует 273,15 К.

Однако практически реализовать обратимый цикл Карно невозможно, поэтому для измерения абсолютной температуры используют газовые термометры, в которых газ находится при низком давлении и подчиняется уравнению Клапейрона – Менделеева: Pv=RT. При постоянном объеме газа в этих термометрах абсолютная температура пропорциональна давлению, что позволяет измерить абсолютную температуру газа через его давление: T=Pv/R.

При значении температуры холодного источника 0 К для обратимого цикла Карно КПД равен единице. В этом случае вся подведенная теплота горячего источника должна превратиться в работу. В случае температуры холодного источника меньше 0 К в цикле Карно оказалось бы получено больше работы, чем подведено теплоты, что противоречит первому закону термодинамики. Таким образом, был сделан вывод о невозможном существовании тел с температурой меньше 0 К.

Вопрос о возможности существования тел с температурой равной 0 К относится к началу ХХ века. Занимаясь теоретическими и экспериментальными исследованиями в области очень низких температур, близких к 0 К, В.Нернст обнаружил, что при приближении к температуре 0 К теплоемкости всех веществ стремятся к нулю. Используя исследования Нернста, М.Планк показал, что вблизи абсолютного нуля все процессы должны протекать без изменения энтропии. На основании этого анализа Планк высказал предположение, что при температуре, равной 0 К для всех веществ, находящихся в равновесном состоянии, энтропия обращается в нуль. Эти утверждения Нернста и Планка составляют содержание третьего начала термодинамики.

Пользуясь третьим началом термодинамики, можно доказать, что абсолютный нуль температуры недостижим. На этом основании третий закон термодинамики может быть сформулирован в следующем виде: никаким способом невозможно охладить тело до температуры абсолютного нуля, т.е. абсолютный нуль температуры недостижим. Формулировку третьего начала термодинамики, близкую к этой, дал Нернст, поэтому она и получила название теоремы Нернста.



Утверждение о недостижимости абсолютного нуля температуры не связано со вторым законом термодинамики. Из этого утверждения лишь следует, что КПД цикла Карно всегда меньше единицы.

Термодинамика имеет дело с термоди­намической системой - совокупностью макроскопических тел, которые взаимо­действуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Основа термодинами­ческого метода - определение состояния термодинамической системы. Состояние системы задается термодинамическими параметрами (параметрами состояния) - совокупностью физических величин, ха­рактеризующих свойства термодинамиче­ской системы. Обычно в качестве парамет­ров состояния выбирают температуру, давление и удельный объем.

Температура - одно из основных по­нятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура - физическая величина, ха­рактеризующая состояние термодинами­ческого равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шка­лы - термодинамическую и Международ­ную практическую, градуированные соот­ветственно в Кельвинах (К) и в градусах Цельсия (°С).

В Международной практической шка­ле температура замерзания и кипения во­ды при давлении 1,013 10 5 Па соответ­ственно 0 и 100 °С (так называемые реперные точки).

Термодинамическая температурная шкала определяется по одной реперной точке, в качестве которой взята тройная точка воды (температура, при которой лед, вода и насыщенный пар при давле­нии 609 Па находятся в термодинамиче­ском равновесии). Температура этой точки по термодинамической шкале равна 273,16 К, (точно). Градус Цельсия равен Кельвину. В термодинамической шкале температура замерзания воды равна 273,15 К (при том же давлении, что и в Международной практической шкале), поэтому, по определению, термодинамиче­ская температура и температура по Меж­дународной практической шкале связаны соотношением T=273,15+t. Температура T=0 называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно.

Удельный объем v - это объем едини­цы массы. Когда тело однородно, т. е. его плотность =const, то v = V / m = 1/. Так как при постоянной массе удельный объем пропорционален общему объему, то мак­роскопические свойства однородного тела можно характеризовать объемом тела.

Параметры состояния системы могут изменяться. Любое изменение в термоди­намической системе, связанное с измене­нием хотя бы одного из ее термодинамиче­ских параметров, называется термодина­мическим процессом. Макроскопическая система находится в термодинамическом равновесии, если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой систе­мы при этом не изменяются).

46. Взаимодействие атомов между собой

При рассмотрении реальных газов -

газов, свойства которых зависят от взаи­модействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они

проявляются на расстояниях 10 -9 м и быстро убывают при увеличении рассто­яния между молекулами. Такие силы на­зываются короткодействующими.

В XX в., по мере развития представле­ний о строении атома и квантовой механи­ки, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. На рис. 88, а приведена качественная зависи­мость сил межмолекулярного взаимодей­ствия от расстояния r между молекулами, где F o и F п - соответственно силы оттал­кивания и притяжения, a F - их результи­рующая. Силы отталкивания считаются положительными, а силы взаимного при­тяжения - отрицательными.

На расстоянии r = r 0 результирующая сила F =0, т. е. силы притяжения и оттал­кивания уравновешивают друг друга. Та­ким образом, расстояние r 0 соответствует равновесному расстоянию между молеку­лами, на котором бы они находились в от­сутствие теплового движения. При r

преобладают силы отталкивания (F>0), при r>r 0 - силы притяжения (F<0). На расстояниях r>10 -9 м межмолекулярные силы взаимодействия практически отсут­ствуют (F 0).

Элементарная работа A силы F при увеличении расстояния между молекула­ми на dr совершается за счет уменьше­ния взаимной потенциальной энергии мо­лекул, т. е.

A=Fdr=-dП. (60.1)

Из анализа качественной зависимости по­тенциальной энергии взаимодействия мо­лекул от расстояния между ними (рис. 88, б) следует, что если молекулы находятся друг от друга на расстоянии, на котором межмолекулярные силы взаимо­действия не действуют (г), то П=0. При постепенном сближении молекул между ними появляются силы притяжения (F<0), которые совершают положитель­ную работу (A=Fdr>0). Тогда, со­гласно (60.1), потенциальная энергия вза­имодействия уменьшается, достигая мини­мума при r=r 0 . При r< r 0 с уменьшением r силы отталкивания (F >0) резко воз­растают и совершаемая против них работа отрицательна (A = Fdr <0). Потенци­альная энергия начинает тоже резко воз­растать и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих мо­лекул в состоянии устойчивого равновесия (r=r 0) обладает минимальной потенци­альной энергией.

Критерием различных агрегатных со­стояний вещества является соотношение величин П min и kT . П min - наименьшая потенциальная энергия взаимодействия молекул - определяет работу, которую нужно совершить против сил притяже­ния для того, чтобы разъединить моле­кулы, находящиеся в равновесии (r=r 0); kT определяет удвоенную среднюю энер­гию, приходящуюся на одну степень сво­боды хаотического теплового движения молекул.

Если П min <, т. е. вероятность образования агрегатов из молекул доста­точно мала. Если II min >>kT , то вещество находится в твердом состоянии, так как молекулы, притягиваясь друг к другу, не могут удалиться на значительные расстоя­ния и колеблются около положений равно­весия, определяемого r0. Если П min kT , то вещество находится в жидком состоя­нии, так как в результате теплового дви­жения молекулы перемещаются в про­странстве, обмениваясь местами, но не расходясь на расстояние, превышающее r 0 . Таким образом, любое вещество в за­висимости от температуры может нахо­диться в газообразном, жидком или твер­дом агрегатном состоянии, причем темпе­ратура перехода из одного агрегатного состояния в другое зависит от значения П min для данного вещества. Например, у инертных газов П min мало, а у метал­лов - велико, поэтому при обычных (ком­натных) температурах они находятся со­ответственно в газообразном и твердом со­стояниях.