Статическая вольт амперная характеристика диода. Характеристики и принцип действия выпрямительных диодов

Статическая вольт амперная характеристика диода. Характеристики и принцип действия выпрямительных диодов
Статическая вольт амперная характеристика диода. Характеристики и принцип действия выпрямительных диодов

РЕЗИСТОРЫ, КОНДЕНСАТОРЫ

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Резисторы

Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры. На их долю приходится от 20 до 50%, т. е. до половины общего количества радиодеталей в устройстве. Принцип работы резисторов основан на использовании свойства материалов оказывать сопротивление протекающему току. Резисторы характеризуются следующими основными параметрами:

Номинальное значение сопротивления . Измеряется в омах (Ом), килоомах (кОм), мегаомах (МОм). ,

Номинальные значения сопротивлений указывают на корпусе резистора. Номинальное значение сопротивления соответствует значению из стандартных рядов сопротивлений, приведенных в приложении 1.

Допустимое отклонение действительного сопротивления резистора от его номинального значения. Это отклонение измеряется в процентах, оно нормировано и определяется классом точности. Наиболее широко используются три класса точности: I – допускающий отклонение сопротивления от номинального значения на ± 5%, II – на ±10%, III – на ±20%. В современной РЭА часто применяют резисторы с повышенной точностью сопротивления, они выпускаются с допусками (%): ±2; ±1; ±0,5; ±0,2; ±0,1; ±0,05; ±0,02; ±0,01 и т. д.

Номинальное значение мощности рассеивания резистора Rном. Этот параметр измеряется в ваттах (Вт). Это наибольшая мощность постоянного или переменного тока, при протекании которого через резистор он может работать длительное время без повреждений. Мощность Рном, ток I, протекающий через резистор, падение напряжения U на резисторе и его сопротивление R связаны зависимостью: P=UI U=IR. В большинстве устройств РЭА применяют резисторы с номинальной мощностью рассеивания от 0,125 до 2 Вт.

Температурный коэффициент сопротивления (ТКС) резистора. Характеризует относительное изменение сопротивления резистора при изменении температуры окружающей среды на 1°С и выражается в процентах. В резисторах ТКС незначительный и составляет в среднем десятые доли – единицы процента.

Электродвижущая сила (ЭДС) собственных шумов. Собственные шумы резистора возникают за счет неупорядоченного движения части электронов при приложенном к нему напряжении. ЭДС собственных шумов (Еш) измеряется в микровольтах на вольт приложенного напряжения (мкВ/В). Эта величина для резисторов также незначительная и составляет единицы микровольт на вольт.

Собственная индуктивность и емкость резисторов. Определяются габаритными размерами, конструкцией и влияют на частотный диапазон применения резисторов.

Резисторы используют для ограничения силы тока в цепях, для создания на отдельных участках схем необходимых падений напряжений, для различных регулировок (громкости, тембров и т. д.) и еще во многих случаях.

Условно-графическое обозначение резисторов и схемы соединения

Согласно ГОСТ2.728-74, УГО постоянного проволочного резистора имеет следующий вид:

Рис. 1. УГО проволочного резистора

Существуют два основных вида схем включения резисторов – последовательное включение резисторов и параллельное.

При последовательном включении резисторов их эквивалентное сопротивление будет равно сумме всех отдельных сопротивлений

При параллельном включении резисторов их эквивалентное сопротивление можно рассчитать по формуле

.

Конденсаторы

Электрическим конденсатором называют устройства, предназначенные для накопления электрического заряда.

Принцип действия конденсатора основан на накоплении электрического заряда между двумя близко расположенными проводниками. Такие проводники так же называются обкладками. В зависимости от типа диэлектрика, который разделяет обкладки различают виды конденсаторов.

К основным параметрам конденсатора относят:

Электрическая номинальная емкость – способность конденсатора накапливать на обкладках электрические заряды под воздействием электрического поля. Номинальная емкость указывается на конденсаторе или в сопроводительной документации, выбирается в соответствии с установленным рядом. Измеряется в фарадах [Ф], однако 1Ф достаточно крупная величина, поэтому значение обычных конденсаторов употребляется с приставками нано- (10 –9), микро- (10 –6), мили- (10 –3).

Допустимое отклонение действительного емкости конденсатора от его номинального значения. Это отклонение измеряется в процентах, оно нормировано и определяется классом точности.

Температурный коэффициент емкости (ТКЕ) – относительное изменение емкости конденсатора под действием температуры. Под действием температуры обкладки конденсатора меняют свои геометрические размеры, изменяется расстояние между ними и значение диэлектрической проницаемости диэлектрика, поэтому изменяется и значение емкости конденсатора. Для всех конденсаторов данная зависимость нелинейная, однако, в зависимости от типа диэлектрика, для некоторых она приближается к линейной.

Номинальное напряжение U – максимально допустимое значение постоянного напряжения (или суммы постоянной составляющей и амплитуды переменной составляющей) при котором конденсатор может работать в течении всего гарантированного срока службы при нормальной температуре.

Условно-графическое обозначение конденсаторов и схемы соединения

Согласно ГОСТ2.728-74на принципиально-электрических схемах конденсаторы обозначаются:

Рис. 2. УГО конденсатора

Существуют два основных вида схем включения конденсаторов – последовательное и параллельное.

При параллельном включении конденсаторов их емкость складывается по формуле

.

При последовательном включении конденсаторов их эквивалентную емкость можно рассчитать по формуле

.

Маркировка резисторов и конденсаторов

Маркировка резисторов

Согласно ГОСТ 28883-90 – промышленно выпускаемых резисторах применяется следующие системы маркировок:

Буквенная полная

Параметры и характеристики, входящие в полное условное обозначение резистора, указываются в следующей последовательности: номинальная мощность рассеяния, номинальное сопротивление и буквенное обозначение единицы измерения, допускаемое отклонение сопротивления в процентах (%), функциональная характеристика, обозначение конца вала и длинны выступающей части вала.

Пример полного условного обозначения постоянного непроволочного резистора с регистрационным номером 4, номинальной мощностью рассеяния 0,5 Вт, номинальным сопротивлением 10 кОм, с допуском ±1%, группой по уровню шумов А, группы ТКС – Б, все климатического исполнения В.

Р1-4‑0,5‑10кОм±1% А-Б-В ОЖО.467.157 ТУ

Буквенные сокращения

Ввиду того что полное условное обозначение занимает значительное место на корпусе резистора, то его применение не всегда возможно и удобно, поэтому было введено сокращенное буквенное обозначение в состав которого входит обозначение номинального сопротивления и допускаемого отклонения. Номинальное сопротивление обозначается в виде кода. Кодированное обозначение номинального сопротивления состоит из трех или четырех знаков, включающих в себя две или три цифры и букву латинского алфавита. Буква кода из русского или латинского алфавита обозначает множитель, составляющий сопротивление, и определяет положение запятой десятичного знака. Буквы R, K, M, G, T обозначают соответственно множители 1, 10 3 , 10 6 , 10 9 , 10 12 . Примеры кодированных обозначений номинального сопротивления выглядят следующим образом: 215 Ом – 215R, 150 кОм – 150K,2,2 Мом – 2M2,6,8 ГОм – 6G8,1 ТОм – 1T0 Кодированное обозначение допускаемого отклонения состоит из буквы соответствующей отклонению в %. Значение букв кодировки приведено в приложении 2.

Помимо описанной выше кодировки в промышленно выпускаемых резисторах применяется цветовая кодировка.

Маркировка конденсаторов

Краткая буквенная маркировка конденсатора выполняется по аналогичным правилам, что и маркировка резисторов. Номинальная емкость конденсатора выражается с помощью 3-4 чисел и кодового обозначения множителя. Принято использовать следующие буквы p, n, μ, m, соответствующие множителям пико- , нано-, микро-, мили- фарад.

Пример маркировки конденсатора: p10 – 0.1пФ; 1μ5 – 1.5мкФ.

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ:

ВАХ ВЫПРЯМИТЕЛЬНОГО ДИОДА

Сравнение характеристики реального диода с характеристикой идеального p-n перехода.

Известно, что статическая ВАХ идеализированного полупроводникового диода описывается выражением:

,

где I – ток диода; U – приложенное к нему напряжение; Is – ток насыщения, определяемый параметрами p-n перехода; kT /q – тепловой потенциал (kT /q =0,0259 В при Т=300К).

Вид характеристики описанной данным выражением представлен на рис. 3.

Рис. 3. ВАХ идеального p-n перехода.

При изображении ВАХ масштаб по осям прямых и обратных напряжений выбирается разным, так как эти значения различаются на порядки. Разные масштабы создают впечатление излома характеристики в нулевой точке, в действительности же ВАХ является дифференциально-гладкой. На прямой ветви характеристики зависимость тока от напряжения носит экспонентациальный характер, а после прохождения напряжение через пороговое значение U пр дальнейшее изменение напряжения на десятые доли вольта вызывает значительное изменение тока через диод.

Единственный параметр ВАХ, связанный с физико-конструктивными параметрами и геометрическими размерами активной области диода, является ток насыщения I s .

где q – заряд электрона; n i – собственная концентрация носителей заряда в полупроводнике; N Db и L pb – коэффициент диффузии и диффузионная длинна неосновных носителей в ней; W b – толщина базы; F – площадь p-n перехода.

ВАХ реального диода отличается от характеристики идеального p-n перехода в силу ряда причин:

· Рекомбинации и генерации дырок и электронов в ОПЗ перехода

· Падения напряжения на объемном сопротивлении базы

· Появления эффектов высокого уровня инжекции при больших токах

· Наличия токов утечки через p-n переход

· Начала пробоя на обратной ветви ВАХ

· Неоднородного легирования базы

· Разогрева p-n перехода выделяемой мощностью

Перечисленные эффекты приводят к тому, что ВАХ диода описывается только качественно.

Обратная ветвь ВАХ образуется суммой трех составляющих:

тока насыщения I s , тока термогенерации в ОПЗ p-n перехода I G и тока утечки I ут . Соотношение между этими составляющими для диодов из разных полупроводниковых материалов различно

Ток термогенерации в p-n-переходе описывается формулой

где δ – ширина p-n-перехода; τ pn – эффективное время жизни, характеризующее темп генерации электронно-дырочных пар в ОПЗ перехода. Ток зависит от приложенного обратного напряжения через зависимость δ (U ).

Ток утечки обусловлен проводящими каналами внутри p-n-перехода и на поверхности кристалла. Он зависит от площади и периметра перехода и ряда других факторов и имеет примерно линейную зависимость от обратного напряжения.

Прямая ветвь ВАХ реального диода сохраняет экспоненциальную зависимость тока от напряжения, поэтому ее можно описывать выражениями типа:

где I 0 и m – параметры характеристики, которые могут изменяться на различных участках ВАХ.

Сравнение характеристик диодов из различных
материалов

Исследуемые в работе диоды выполнены из различных полупроводниковых материалов, но имеют примерно одинаковые физико-конструктивные параметры. Отличие их характеристик связано с отличием параметров:

· Ширины запрещенной зоны

· Подвижности носителей заряда

· Время жизни носителей заряда и др.

Наибольшее влияние на различие параметров оказывает разница в значениях ширины запрещенной зоны E g . Она определяет собственную концентрацию носителей заряда n i которая входит в выражение параметров ВАХ.

Значение ширины запрещенной зоны E g и n i приведены в приложении 3.

Токи насыщения всех диодов, кроме германиевого, очень малы и составляют единицы наноампер, поэтому основным компонентом обратного тока этих диодов является ток утечки. Основное отличие прямых ветвей ВАХ различных диодов заключается в различном значении тока насыщения. В приложении 3 приведены значения U ПР полученные теоретическим путем у реальных диодов оно может отличаться по ряду причин, в основном из-за падения на объемном сопротивлении базы.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Для исследования вольтамперной характеристики реального диода студентам необходимо произвести сборку схемы эксперимента

Рис. 4. Схема эксперимента

В качестве милиамперметра и вольтметра могут быть использованы цифровой осциллограф либо цифровые мультиметры. В качестве источника используется управляемый источник напряжения на учебном стенде NI ELVIS. В целях обеспечения бесперебойной работы генератора стенда в цепь необходимо включить ограничивающее сопротивление R, значение которого студентам необходимо рассчитать, используя параметры стенда.

После сборки схемы и её проверки преподавателем, студентам необходимо произвести серию экспериментов. Путем регулировки значения напряжения на выходе с генератора и записью показаний приборов в таблицу.

    Выпрямительные ПП диоды. Особенности конструкции. ВАХ. Основные параметры.

    Уравнения коллекторных токов для схем включения ОБ и ОЭ.

Коэффициенты передачи тока, их соотношения.

1. Выпрямительные ПП диоды.

Выпрямительный диод предназначен для преобразования переменного напряжения в постоянное. Идеальный выпрямитель должен при одной полярности ток пропускать, при другой полярности не пропускать. Свойства полупроводникового диода близки к свойствам идеального выпрямителя, поскольку его сопротивление в прямом направлении на несколько порядков отличается от сопротивления в обратном. К основным недостаткам полупроводникового диода следует отнести: при прямом смещении -наличие области малых токов на начальном участке и конечного сопротивления rs ; при обратном - наличие пробоя.

Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты (менее 50 кГц).

Особенности конструкции.

По уровню рассеиваемой мощности различают диоды:

малой мощности (выпрямленный ток не более 300 мА);

средней мощности (выпрямленный ток от 400 мА до 10 А);

большой мощности (выпрямленный ток более 10 А);

По конструкции - точечные, плоскостные.

Применяемые полупроводниковые материалы: германий, кремний, селен, титан.

По способу изготовления : сплавные, диффузионные (рисунок 1).

Рис. 1. Структуры выпрямительных диодов.

Рисунок 2. Примеры конструкции диода.

На рисунке 2 показаны примеры конструкций диодов с различным сопротивлением: (слева-1,2-малой мощности) Rт = (100-200) °/Вт,
(справа-3-средней мощности) Rт = 1-10°/Вт.

Вольт-амперная характеристика выпрямительного диода.

Рисунок 3. ВАХ выпрямительного диода.

При электротехническом анализе схем с диодами отдельные ветви ВАХ представляют в виде прямых линий, что позволяет представить диод в виде различных эквивалентных схем. Выбор той или иной схемы замещения диода определяется конкретными условиями анализа и расчета устройства, включающего диоды.

Рисунок 4.1.

Рисунок 4.2.

Работа диода на активную нагрузку представлена на рисунке 4.1. Ток через диод описывается его вольтамперной характеристикой iд = f(uд) , ток через нагрузочное сопротивление, поскольку соединение последовательное, будет равен току через диод iд = iн = i и для него справедливо соотношение iн = (u(t) - uд)/Rн. На рисунке 4.2 в одном масштабе показаны линии, описывающие обе эти функциональные зависимости: ВАХ диода и нагрузочную характеристику.

Рисунок 4.3.

На рисунке 4.3 показано, что, чем круче характеристика диода и чем меньше зона малых токов ("пятка"), тем лучше выпрямительные свойства диода. Заход рабочей точки в предпробойную область приводит не только к выделению в диоде большой мощности и возможному его разрушению, но и к потере выпрямительных свойств.

Основными параметрами , характеризующими выпрямительные диоды, являются

Максимальный прямой ток I пр max (0.01…10 А);

Падение напряжения на диоде при заданном значении прямого тока I пр

(U пр » 0.3...0,7 В для германиевых диодов и U пр » 0,8...1,2 В -для кремниевых);

Максимально допустимое постоянное обратное напряжение диода U обр max ;

Обратный ток I обр при заданном обратном напряжении U обр (значение обратного тока германиевых диодов на два -три порядка больше, чем у кремниевых) (0.005…150 мА).;

Барьерная емкость диода при подаче на него обратного напряжения некоторой величины;

Диапазон частот, в котором возможна работа диода без существенного снижения выпрямленного тока;

Рабочий диапазон температур (германиевые диоды работают в диапазоне

60...+70°С, кремниевые - в диапазоне -60...+150°С, что объясняется малыми обратными токами кремниевых диодов).

2. Уравнения коллекторных токов.

Для схемы включения с ОБ.

Выражение для идеализированной выходной характеристики в активном режиме имеет вид:

i К =α · i Э + I КБ0 .

Для схемы включения с ОЭ.

Выражение для идеализированной выходной характеристики в активном режиме имеет вид:

i К = · i Б + I КЭ0 .

Если разорвать цепь эмиттера, то под действием обратного напряжения на коллекторе через коллекторный переход из коллектора в базу будет протекать обратный ток I КБ0 . Его величина приводится в справочных данных транзистора.

I КЭ0 =α·I КБ0 - называется сквозным тепловым током транзистора.

Схема с общим эмиттером (ОЭ).

Такая схема изображена на рисунке 5.

Рис. 5. Схема включения транзистора с общим эмиттером

Усилительные свойства транзистора характеризует один из главных его параметров - статический коэффициент передачи тока базы или статический коэффициент усиления по току β . Поскольку он должен характеризовать только сам транзистор, его определяют в режиме без нагрузки (R к = 0).

Численно он равен:

при U к-э = const

Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент k i всегда меньше, чем β, т. к. при включении нагрузки ток коллектора уменьшается.

Схема с общей базой (ОБ) .

Схема ОБ изображена на рисунке 6.

Рис. 6. Схема включения транзистора с общей базой.

Статический коэффициент передачи тока для схемы ОБ обозначается α и определяется:

при U к-б = const

Этот коэффициент всегда меньше 1 и чем он ближе к 1, тем лучше транзистор.

Соотношения для коэффициентов передачи по току для схем ОБ и ОЭ имеют вид:

K iб = i к /i э = α, K iэ = i к /i б = α./(1- α.)

Коэффициент α > 1 и составляет 49 - 200.

Выпрямительный диод — это прибор проводящий ток только в одну сторону. В основе его конструкции один p-n переход и два вывода. Такой диод изменяет ток переменный на постоянный. Помимо этого, их повсеместно практикуют в электросхемах умножения напряжения, цепях, где отсутствуют жесткие требования к параметрам сигнала по времени и частоте.

  • Принцип работы
  • Основные параметры устройств
  • Выпрямительные схемы
  • Импульсные приборы
  • Импортные приборы

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение - Si) и германиевые (обозначение - Ge). У первых рабочая температура выше. Преимущество вторых - малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

  • Первый элемент – обозначение материала из которого он выполнен;
  • Второй определяет подкласс;
  • Третий обозначает рабочие возможности;
  • Четвертый является порядковым номером разработки;
  • Пятый – обозначение разбраковки по параметрам.

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.

ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Он отражает качество выпрямителя.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

  • Наибольшее значение среднего прямого тока;
  • Наибольшее допустимое значение обратного напряжения;
  • Максимально допустимая частота разности потенциалов при заданном прямом токе.

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

  • Приборы малой мощности. У них значение прямого тока до 300 мА;
  • Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А;
  • Силовые (большой мощности). Значение более 10 А.

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

  • Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт;
  • Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.

Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.

Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

  • Максимальные импульсные прямые (обратные) напряжения, токи;
  • Период установки прямого напряжения;
  • Период восстановления обратного сопротивления прибора.

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Полупроводниковый диод это полупроводниковый прибор с одним p-n переходом и с двумя электродами. Принцип действия полупроводникового диода основан на явлении p-n перехода, поэтому для дальнейшего изучения любых полупроводниковых приборов нужно знать как работает .

Выпрямительный диод (также называют вентилем) — это разновидность полупроводникового диода который служит для преобразования переменного тока в постоянный.

У диода есть два вывода (электрода) анод и катод. Анод присоединён к p слою, катод к n слою. Когда на анод подаётся плюс, а на анод минус (прямое включение диода) диод пропускает ток. Если на анод подать минус, а на катод плюс (обратное включение диода) тока через диода не будет это видно из вольт амперной характеристики диода. Поэтому когда на вход выпрямительного диода поступает переменное напряжение через него проходит только одна полуволна.

Вольт-амперная характеристика (ВАХ) диода.

Вольт-амперная характеристика диода показана на рис. I. 2. В первом квадранте показана прямая ветвь характеристики, описывающая состояние высокой проводимости диода при приложенном к нему прямом напряжении, которая линеаризуется кусочно-линей­ной функцией

u = U 0 +R Д i

где: u — напряжение на вентиле при прохождении тока i; U 0 — пороговое напряжение; R д — динамическое сопротивление.

В третьем квадранте находится обратная ветвь вольт-амперной характеристики, описывающая состояние низкой проводимости при проложенном к диоду обратном напряжении. В состоянии низкой проводимости ток через полупроводниковую структуру практически не протекает. Однако это справедливо только до определённого значения обратного напряжения. При обратном напряжении, когда напряженность электрического поля в p-n переходе достигает порядка 10 s В/см, это поле может сообщить подвижным носителям заряда - электронам и дыркам, постоянно возникающим во всем объеме полупроводниковой структуры в результате термической генерации,- кинетическую энергию, достаточную для ионизации нейтральных атомов кремния. Образовавшиеся дырки и электроны проводимости, в свою очередь, ускоряются электрическим полем p-n перехода и также ионизируют нейтральные атомы кремния. При этом происходит лавинообразное нарастание обратного тока, .т. е. лавинный пробои.

Напряжение, при котором происходит резкое повышение обратного тока, называется напряжением пробоя U 3 .

Диод – нелинейный пассивный элемент, простейший прибор на основе полупроводника с одним p-n переходом и двумя выводами. Является одним из основных компонентов электронных устройств. Не углубляясь в физику процессов, происходящих в полупроводниковых структурах, следует отметить основное его назначение – пропускать ток в одном направлении. Выводы диода называются анодом и катодом, на обозначении стрелка – это анод, она же указывает на направление тока.

Свойства и вольт-амперная характеристика

Если к аноду приложить положительное напряжение, то диод становится открытым, при этом его можно рассматривать как проводник, работающий в «одну сторону», при смене полярности (отрицательном напряжении на аноде) диод закрыт. Надо отметить, что прохождение тока в прямом направлении вызывает некоторое уменьшение напряжения на катоде, вызванное особенностями проводимости полупроводников. Падение напряжения для разных типов приборов составляет 0,3-0,8 вольт, в большинстве случаев им можно пренебречь.

Поведение диода при разных значениях протекающего тока, величины и полярности приложенного напряжения, в виде графика представляется как вольт амперная характеристика полупроводникового диода.

Часть графика, находящаяся в правой верхней части, соответствует прямому направлению тока. Чем ближе эта ветвь к вертикальной оси, тем меньше падение напряжения на диоде, её наклон указывает на эту величину при разных токах. Для идеального диода она не имеет наклона и почти совпадает с осью ординат, но реальный полупроводник не может обладать такими характеристиками.

В левом нижнем квадранте отображается зависимость тока от напряжения обратной полярности – в закрытом состоянии. Обратный ток для приборов общего назначения исчезающе мал, его не принимают во внимание до момента пробоя – возрастания обратного напряжения до недопустимой для конкретного типа величины. Большинство диодов при таком напряжении не могут работать, температура значительно возрастает, и прибор окончательно выходит из строя. Напряжение, при котором существует вероятность пробоя, называют обратным пиковым, обычно оно в несколько раз превышает рабочее, в документации указывается допустимое время – в пределах микросекунд.

Для измерения параметров применяется элементарная схема с прямым и обратным включением диодов.

В технических описаниях вольт амперная характеристика диода в графическом представлении, как правило, не приводится, а указываются наиболее значимые точки характеристики, например, для часто используемых выпрямительных диодов:

  • Максимальный и пиковый выпрямленный ток;
  • Среднеквадратичное и пиковое значение обратного напряжения;
  • Наибольший обратный ток;
  • Падение напряжения при различном прямом токе.

Кроме указанных параметров, не меньшее значение имеют и другие свойства: статическое сопротивление, для импульсных диодов – граничная частота, ёмкость p – n перехода. Приборы специального назначения также имеют специфические характеристики и другой вид ВАХ полупроводникового диода.

Отдельный тип диодов работает в области электрического пробоя, они применяются для стабилизации напряжения – это стабилитроны. От ВАХ диода характеристика стабилитрона отличается резким уходом вниз левой ветви графика и малым её отклонением от вертикали. Эта точка на оси абсцисс называется напряжением стабилизации. Стабилитрон включается только с резистором, ограничивающим ток через него.

Видео